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Abstract: In this paper, we describe a new program-
ming environment, RXF, for building a multi-agent
system (MAS), and its debugger. RXF is used for
realizing intuitive development of an MAS that con-
sists of reflective agents. The reflective agents are in-
telligent and autonomous agents based on a reflection.
RXF provides the capabilities of a constraint-logic pro-
gramming language and a reflection mechanism for re-
alizing reflective agents. In constraint-logic program-
ming, programmers can represent various data by us-
ing predicates as well as process numerical data. We
also present a multi-agent tracer that is a debugging
tool for developing MASs. We show the experimental
result of the tracer and conclude that the debugger can
be used for debugging MASs.

1 INTRODUCTION

We have developed RXF (Reflective Familiar) [1, 2,
3, 4], a new programming environment for building a
multi-agent system (MAS). The main aim of this re-
search is to create a programming environment for the
efficient development of MASs instead of implement-
ing an agent-oriented language [5]. In other words,
we are interested in what types of functions are re-
quired when building MASs. An MAS in RXF con-
sists of reflective agents, which are intelligent and au-
tonomous agents based on reflection [6]. RXF employs
constraint-logic programming (CLP) [7], multi-thread
programming, and reflections [6]. The multi-thread
programming and the reflections are used for concur-
rent programming [8] and meta-level programming [9],
respectively. In CLP, we can represent various data by
using logical predicates [10, 11, 12]. Agents in RXF run
based on a thread process [1]; that is they can commu-
nicate with each other through ports (message-passing
mechanisms) in RXF. The ports provide functions for
using various communication protocols (e.g., TCP/IP,
AppleTalk [13], etc). In addition, RXF provides an

easy communication method for implementing MASs
over networks. We have created RXF window inter-
faces that are effective environments for programming
agents. RXF provides a multi-agent tracer that allows
programmers to effectively debug MASs. A tracer for
MASs can be considered to be a tracer for concurrent
programs. The main problems associated with debug-
ging concurrent programs are increased complexity, the
“probe effect,” and the lack of a synchronized global
clock [14]. The “probe effect” [15] refers to the fact that
any attempt to gain more information about the pro-
gram may contribute to the difficulty of reproducing
the erroneous behaviors. Many techniques for debug-
ging concurrent programs have been proposed [14]; we
have chosen tracing as our debugging technique. Trac-
ing is a method to dynamically examine the state of
programs running. We think tracing is good for inter-
active debugging because programmers can control the
flow of programs as they are debugging. Our system is
based on an interpreter, because we regard interaction
during debugging to be important for rapid develop-
ment. Generally speaking, tracing causes the “probe
effect.” Our tracer can reduce the “probe effect” when
debugging MASs.

In this paper, we propose an RXF programming en-
vironment that allows us to program MASs efficiently.
The paper is organized as follows: Section 2 presents
the features of RXF. Section 3 presents an MAS de-
bugging problem and its solution. Section 4 presents
related work regarding RXF. Some concluding remarks
are presented in Section 5.

2 RXF

2.1 SUBSYSTEMS

RXF is a programming environment for developing
MASs. We implement RXF by using the C++ and
Java [4] programming languages on a Macintosh. Fig-
ure 1 shows the three components of RXF: an agent
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operating system (AOS), the name manager, and the
agent description language (ADL), which allows one
to build agents. In RXF, ADL is based on a CLP
language that has a reflection mechanism that can be
used by the language. AOS provides various functions
for building agents. AOS in RXF has a multi-thread
and a port subsystem. The multi-thread subsystem
provides functions that enable concurrent processing.
The port subsystem is an I/O subsystem of ADL. For
example, the port subsystem is used for implementing
a file I/O system, a message-passing system, and a user
interface system. The subsystems of AOS, the name
manager, and ADL are implemented by directly using
the Java language functions. The name manager man-
ages relations between names (symbols) on ADL and
subsystems of AOS. Specifically, ADL can access the
subsystems with names that are managed by the name
manager. Agents (including meta-agents) are built in
ADL.

RXF can provide functionalities for constraint-logic
programming, multi-thread programming, and reflec-
tion. CLP is a new class of programming languages
combining the declarativity of logic programming with
the efficiency of constraint solving [16]. In CLP, we can
represent various data by using predicates and we can
process numerical data. By using multi-thread pro-
gramming, agents can run in parallel in RXF. In the
agents, multiple threads run in parallel. For example,
when a thread is running, other threads in the agent
can process some tasks and events ( e.g. interruption
handling). Multi-thread programming enables concur-
rent programming. Reflection is used for meta-level
programming. RXF can also provide an integrated de-
velopment environment (IDE for RXF programs).

Agents can communicate with other agents by ports
(message-passing mechanisms) in RXF. The ports pro-
vide functions for using various communication pro-
tocols. The state of an agent in a network environ-
ment changes dynamically in response to communi-
cation with other agents. A logic programming lan-
guage deals with static programs and data. In or-
der to implement agents using a logic programming
method, we need to develop new methods for handling
dynamic data. In implementing an RXF environment,
we propose the port mechanism to deal with the dy-
namic data. An agent can only interact outside of
his/her environment by using the ports. The ports
translate low-level data such as bit sequences into log-
ical predicates that are available in RXF. Agents have
ports for message passing, generating meta-level ex-
pressions, and using a graphical user interface. A port
for message-passing is called a message port, while
a port for generating meta-level expressions is called
an agent port. Generating meta-level expressions and
modifying states of an agent are implemented by an
agent port.

Constraint Logic Programming
Language Interpreter

...

Agent

Name Manager

...

Agent Operating System

Agent Description Language
RXF

Reflection

JAVA
Thread

Port
MessageFile Graphics

Figure 1: THE OUTLINE OF SUBSYSTEMS IN RXF

2.2 META-LEVEL PROGRAMMING FOR
REFLECTIVE AGENTS

An agent in RXF consists of two components: a CLP
language interpreter and an agent management sys-
tem. The interpreter evaluates agent programs written
in the CLP of RXF. The agent management system
manages memories, files, messages, events, and inter-
ruptions for the agent programs. In RXF, the agent
management system is also realized by an interpreter,
as mentioned in the Introduction, in order to allow for
efficient and simple system implementation, which in
turn contributes to flexibility in building MASs.

Reflection [6] is used to realize an effective method
for meta-level programming. The primary aims of im-
plementing the reflection mechanism in RXF are (1)
to enable an agent to manage his/her own states for
problem solving, (2) to enable customization of the
RXF language environment, (3) to clarify computa-
tion models by separating resource-management tasks
from problem solving tasks, and (4) to enable the cus-
tomization of computational states for an agent. In
our approach to these aims, the agent ports are im-
plemented for point (1). To implement point (2), we
have created a meta-level execution mechanism, and
achieving point (3) involves using agent ports and the
meta-level execution mechanism. To achieve point (4),
we designed a meta-agent that is used as an agent man-
agement system in the agent architecture. A reflective
agent can dynamically adapt to its environment by us-
ing the reflection mechanism.

An agent port generates meta-level expressions that
are representations of a base-level agent on a meta-
level. For example, when an agent is evaluating a query
“a(X)”, a meta-level expression of query “a(X)” gener-
ated by an agent port for the agent is “goal(a(’X’))”.
The quotations around X indicate that X is a base-level
variable, not a meta-level variable.
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(1) run_agent :-

loop,

event::in(Event,[wait]),

do_attention(Event),

fail.

(2) do_attention(message(F,T,M)) :-

!,

(message(F,T,M)

;base_message::put(message(F,T,M))),

!,

true.

(3) do_attention(Event) :-

!,

call(Event),

!,

true.

(4) query(X) :-

base_eval::status = stop,!,

base_eval::query(X).

(5) query(X) :-

base_eval::thread_query(X).

Figure 2: AN EXAMPLE OF DESIGNING AN AGENT

MANAGEMENT SYSTEM

2.3 IMPLEMENTING AN AGENT MAN-
AGEMENT SYSTEM

In this section we show an example of RXF program-
ming. Figure 2 shows an example for implementing an
agent management system in RXF. The system man-
ages the low-level processes of an agent. The low-level
processes include message passing, interruptions, and
performing tasks given by users. The program repeats
two processes: (a) getting an event from an event port,
and (b) handling the event properly. In process (a),
the event port is a mechanism for getting events that
are queries, messages, mouse clicks, etc. Process (b)
handles an event that is obtained in the process (a).
For example, if the agent management system obtains
a message, the message is delivered into the message
port. If the system obtains a query, the query is eval-
uated by a new thread.

In program (1) shown in Figure 2, the predicate
“run agent” is a program that repeats processes (a)
and (b). The command “event::in(Event,[wait])”
represents process (a), which is used for getting an
event from the event-port “event” (“[wait]” is an in-
struction to block the process until an event is given).
The predicate “do attention(Event)” represents pro-
cess (b) and gives an example of using the name man-
ager. Specifically, in RXF, a command with an oper-
ator ’::’ (’::’ is defined as an infix operator) is used
for controlling the name manager.

In Figure
2, the predicates “do attention(message(F,T,M))”
indicated by (2) and “do attention(Event)” indi-
cated by (3) implement process (b). Program (2)
processes messages, and program (3) processes events.

If a message matches the name of an attention han-
dler, program (2) evaluates that attention handler. If
the evaluation of the attention handler fails, the com-
mand “base message::put(message(F,T,M))” puts
the message into the message port “base message”.
Program (3) evaluates a goal that is obtained as an
event.

In Figure 2, the predicates “query(X)” indicated
by (4) and (5) evaluate events matching “query(X)”.
In program (4), the command “base eval::status =
stop” succeeds if the current state of the base-level
interpreter is “stop”. The state “stop” means that
the interpreter evaluates nothing. Specifically, pro-
gram (4) evaluates X by using “base eval::query(X)”
if the interpreter “base eval” evaluates nothing. Pro-
gram (5) evaluates the query if program (4) fails. Pro-
gram (5) creates a new thread by using the command
“base eval::thread query(X)”, and lets the thread
evaluate “X”. Using the name manager, we can effec-
tively design and program the low-level processes of an
agent.

3 THE MULTI-AGENT TRACER

The multi-agent tracer is used for debugging MASs. A
tracer for logic programming languages (e.g, Prolog)
is a powerful tool for debugging programs in a single-
threaded execution, but a simple tracer in a distributed
environment is not as powerful as the single-threaded
execution of logic programming languages.

RXF has a tracer based on the box model [17] to
debug CLP programs. If a user uses the tracer to debug
an agent in an MAS, the user needs to be aware that
the agent being traced was suspended by the tracer
but that other agents of the MAS are still running
asynchronously. The asynchronous processing makes
debugging difficult. We therefore needed a tracer that
could delay the execution of all agents in an MAS while
debugging occurs. The new RXF tracer can be used to
approximately synchronize the execution of all agents
in an MAS by delaying execution of the agents. We call
this function the approximate synchronization facility.

3.1 THE INTERFACE

The tracer can delay the execution of agents in an
MAS. Programmers can manually control the delay
time in order to synchronize the agent programs are
thereby effectively debug MASs.

Figure 3 is an illustrations of the graphical interface
of the tracer. Figure 3 shows that two agents, “a” and
“b,” are running. Agent “a” is not being debugged.
Agent “b” is now being debugged. There are three
windows “a,” “b,” and “Call” in Figure 3. The dialog
window labeled 1 shown in Figure 3 is a main inter-
face of the tracer. Programmers can control the tracer
through the dialog. The window labeled “2” and the

3



1
2

3

"Creep buttom"

"Sync. check box"

"Slide bar"

Figure 3: THE ILLUSTRATIONS OF THE TRACER

window labeled “3” shown in Figure 3 are the inter-
faces of agents “a” and “b,” respectively. We call each
window an agent window. Agent window “a” displays
the output of agent “a,” while a agent window “b”
displays a trace of agent “b” and the output of agent
“b.”

There are thirteen components in the dialog window
that allow programmers to control the tracer. The
components concerned with the approximate synchro-
nization facility are the “Creep” button, the “Sync.”
check box, and the slide bar. The “Creep” button is
for tracing entry into called goal. The button can be
used to see what is happening, step by step. As soon
as a programmer clicks the “Creep” button a new goal
will be displayed in the agent window of a target agent.
The slide bar can be used to manually control the delay
time. The check box is the switch of the approximate
synchronization facility. If the check box is on, the
tracer delays the execution of nontarget agents.

3.2 EVALUATION

We believe that the tracer works well to debug MASs.
We tested our system by tracing a multi-agent schedul-
ing system we implemented. In multi-agent schedul-
ing, agents who act autonomously in the network can
schedule meetings on other individuals’ behalf. The
agents negotiate with each other by using a persuasion
protocol [18] to reach an agreement.

The purpose of the test is to show that execution-
speed ratios of the MAS with tracing and the MAS
without tracing are similar. To compare the ratios,
we measured the execution speeds while the tracing
mechanism was active (“trace on”) and inactive (“trace
off”). The more similar the ratios are, the better the
tracer is.

The test environment consisted of three computers
connected with a 10 Mbps Ethernet. The computers

A B C
trace off 1.00 0.603 0.554
trace on 1.00 0.597 0.511

Table 1: THE RATIO OF THE EXECUTION
SPEEDS

were,an (a) Apple PowerMacintosh G3 233, (b) an Ap-
ple PowerMacintosh 7300/180, and (c) an Apple Pow-
erMacintosh 7300/166. Each computer could commu-
nicate with the others using the network.

Three agents, A, B, and C, belonged to the test
MAS. A, B, and C were running on computers a,
b, and c, respectively. A was a target agent; B and
C were nontarget agents. We ran each test five times.
First we examined the ratio of the agents in ”trace off”
mode. The average ratio was A : B : C = 1.00 : 0.603
: 0.554 (shown in table 1). Second we examined the
ratio of the agents in ”trace on” mode, and the aver-
age ratio was A : B : C = 1.00 : 0.597 : 0.511 (shown
in table 1). Table 1 shows the result. This table in-
dicates that we can consider the two ratios as nearly
identical data. Therefore, we conclude that the tracer
is practical enough to debug MASs.

4 DISCUSSIONS

We first describe related work on multi-agent system
development.

The MadKit [19] is a multi-agent platform built on
an organizational model. It provides general agent fa-
cilities (lifecycle management, message passing, distri-
bution, ...) and allows high heterogeneity in agent ar-
chitectures and communication languages.

The JAFMAS [20] is a Java-based framework for
representing and developing cooperation knowledge
and protocols in an MAS. The JAFMAS provides a
generic methodology for developing speech-act-based
MASs along with a set of classes to support imple-
menting their agents in Java.

Fischer [21] has attempted to model autonomous
resource-bound agents that interact with each other
in dynamic multi-agent environments. InteRRaP
implements a pragmatic belief desire-intention (BDI)
architecture, where the agent’s mental state is dis-
tributed over a set of layers. In RXF, functions of
each layer of an agent are not defined as they are in
InteRRaP. Because we believe that an optimal archi-
tecture for layers does not exist, in RXF programmers
can decide upon and design architectures for specific
kinds of problem-solving. The layers of InteRRaP
cannot run in parallel. The layers of RXF can run in
parallel based on the multi-thread mechanism.

Barbuceanu [22] has focused on developing “Agent
Building Shell” that provides reusable languages and
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services for agent construction, relieving developers of
the effort of building agent systems from scratch and
guaranteeing that essential interoperation, communi-
cation, and cooperation services will always be there to
support the application. The main difference between
“Agent Building Shell” and RXF is that he latter is
an agent architecture in which agents can be flexibly
customized by meta-level programming based on a re-
flection.

We are not familiar with any debuggers for MASs.
Instead, we describe research on debuggers for multi-
thread programming.

Krinke [23] proposed a method for static slicing of
threaded programs with interference. The method can
analyze three dependence types: the control, data, and
interference dependencies. Using Krinke’s method, we
can be aware of the dependencies on data and state-
ments in programs, but this method is not suited for
interactive debugging because the computation cost is
high. On implementing interactive debuggers such as
our system, we needed fast method, and our method
is fast enough to allow programmers to interactively
debug programs.

Stromme [24] developed a debugging and testing sys-
tem. The software targeted by our testing technology
is large-scale, distributed, concurrent software, with a
significant real-time aspect, such as a digital switching
system. Stromme’s system can trace multi-threaded
programs by using multiple tracers, and the tracers
create a large amount of debugging information. Pro-
grammers cannot quickly understand the meaning of
this much information. The debugging information
produced by our system is little enough to under-
stand instantly. We think that a single tracer is bet-
ter than multiple tracers for interactive debugging of
multi-threaded programs.

5 CONCLUSION

We have described a new programming environment
for building reflective intelligent and autonomous
agents. In order to realize an effective environment for
building MASs, we have developed the RXF program-
ming environment. RXF can be used for building flexi-
ble and extendable MASs. RXF is designed based on a
constraint-logic programming language, and it has an
effective mechanism of reflection to create autonomous
agents. The reflection can be used to customize agents
by themselves. The main purpose of this research is
to create a programming environment for efficiently
building multi-agent systems rather than implement-
ing an agent-oriented language such as AGENT 0 [25].
Programmers implementing MASs need not only a de-
velopment environment but also a debugger. In the
past, programmers using a simple debugger for RXF
have not been able to find bugs, but our new tracer
resolves this problem, as it can control the execution

speed of agents in an MAS. Our tests showed that the
tracer can properly delay non-target agents. By using
the tracer, we can effectively debug agents in an MAS.
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